Te Kete Ipurangi
Communities
Schools

### Te Kete Ipurangi user options:

Level Three > Geometry and Measurement

# Tim's Trip

Achievement Objectives:

Specific Learning Outcomes:

Calculate accurately using units of time and speed.

Explain their methods and reasoning using correct mathematical terms

Devise and use problem solving strategies to explore situations mathematically (guess and check, draw a diagram)

Description of mathematics:

Students first have to know how long it takes Tim to do 7km given the speed that he can make on his bike. They have to combine two times (the time to grandma’s house and back) to see how long he takes travelling. This time will then need to be taken from 1hr. The numbers used in this problem will give some students the opportunity to work it out mentally. Encouraging students to work out problems mentally develops their understanding of numbers and number operations.

Required Resource Materials:
Copymaster of the problem (English)
Copymaster of the Problem (Māori)
Activity:

### Problem

It’s 7km from Tim’s house to where his Grandma lives. It’s uphll on the way there so he can only cycle at 14kph but he can do 21kph on the way back.

Tim leaves his house at 6pm. How long can he stop at his Grandma’s house if he wants to be back home for his favourite TV programme at 7pm?

### Teaching sequence

1. Discuss reasonable cycling speeds as an introduction to this problem. Ask the students to justify their estimates (eg followed a cyclist in the car, know the speeds of professional cyclists).
2. Pose the problem.
3. Brainstorm for strategies that will help solve the problem (eg. a picture of the trip.)
4. As the students work on the problem with a partner ask questions that focus their thinking on the use of units of time and speed?
What does 14 kmph mean?
How far would Tim travel in 2 hours?
How far would Tim travel in 30 minutes? How did you know that?
5. Share solutions.

#### Extension to the problem

At what time should Tim leave home if he wants to spend 45 minutes at his grandma's?

#### Solution

The trip to grandma’s takes 30 minutes. (If he were travelling at 7kph he would take an hour. Travelling at twice that speed halves the time.) This means that the home trip takes a third of an hour or 20 minutes. Tim’s total travelling time is therefore 50 minutes. If he spends 10 minutes with grandma he can still get home to watch his favourite programme.

#### Extension:

To get this note that Tim will still need to spend 50 minutes travelling. However his total time away here will be 50 + 45 = 95 minutes. Now 95 minutes before 7 pm is 5:25 pm. (Another way to look at this is that this time he spends 35 minutes more with his grandma. So he has to leave home 35 minutes earlier than 6 pm, He then has to leave at 5:25 pm)

AttachmentSize
Tim.pdf37.85 KB
TimMaori.pdf52.41 KB

## Snails

Measure using cm.

Solve problems using minutes as the unit.

Devise and use problem solving strategies to explore situations mathematically

## Time Problems

Understand how positive and negative numbers can be used in an unusual practical problem.

Devise and use problem solving strategies to explore situations mathematically (guess and check, be systematic, look for patterns, draw a diagram, make a table, use algebra).

## Training

Use their own language to talk about features of a set of data.

Devise and use problem solving strategies (draw a picture, use equipment, think).

## Moana's Watch

Convert seconds to minutes.

Subtract minutes and seconds using a 24-hour clock

Devise and use problem solving strategies to explore situations mathematically (be systematic).